期刊詳細資料 Journal detailed information  
作者(Author)羅章秀、林柏丞
是否為通作者(Is Corresponding Author?)Yes
篇名(Article title)結合深度學習與街景影像建構街道廣告招牌之空間聚集指標
期刊名(Journal name)航測及遙測學刊
國際期刊(International Journal)
中文摘要(Abstrct)近年來許多研究透過深度學習建構都市量化指標,作為後續相關議題結合應用。基於臺灣廣告招牌密度高、樣式多元,本研究旨在應用常見深度學習(Deep Learning)之語義分割(Semantic Segmentation)以及物件偵測(Object Detection)方式,量化街景影像中廣告招牌街道空間聚集狀態,並探討研究區域空間分布型態。成果顯示,Deeplab v3+模型訓練平均交併比(Mean Intersection over Union, MIoU)值可達83%;YOLOv7模型精確率(Precision)與召回率(Recall)分別可達91.7%與87.1%,顯示有一定辨識成效,亦可與實際分布情形相符合。本研究可為後續廣告招牌進一步應用與探勘,以及相關領域結合應用之契機。
ABSTRCTIn recent years, deep learning has been used to construct quantitative indicators relevant to urban areas. Given the diverse array of dense billboards in Taiwan, this study aims to utilize deep learning techniques, including semantic segmentation and object detection, in conjunction with street view imagery to quantify the spatial distribution of signboards. Moreover, this study examines the spatial distribution patterns within the research area. The results demonstrate that the MIoU value of Deeplab v3+ model achieves 83%, while the Precision and Recall of YOLOv7 model achieves 91.7% and 87.1%. The analysis of spatial distribution patterns results align well with the actual distribution of billboards. This study can serve as a foundation for further exploration and application of billboards, as well as for integration with other related fields.
中文關鍵字(Keyword)深度學習、語義分割、物件偵測、街景影像、空間分析
KEYWORDDeep Learning, Semantic Segmentation, Object Detection, Street View Imagery, Spatial Analysis
卷期(Volume No)第29卷 第1期
頁數(Page number)第17~34頁
年份(Year)2024
語言(Language)中文 Chinese